Some Identities of the Generalized Twisted Bernoulli Numbers and Polynomials of Higher Order
نویسنده
چکیده
The purpose of this paper is to derive some identities of the higher order generalized twisted Bernoulli numbers and polynomials attached to χ from the properties of the p-adic invariant integral. We give some interesting identities for the power sums and the generalized twisted Bernoulli numbers and polynomials of higher order using the symmetric properties of the p-adic invariant integral. 2000 Mathematics Subject Classification : 11S80, 11B68, 05A30, 58J70
منابع مشابه
Viewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials
In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.
متن کاملModified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)
The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...
متن کاملHigher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کاملNote on q-Extensions of Euler Numbers and Polynomials of Higher Order
In [14] Ozden-Simsek-Cangul constructed generating functions of higher-order twisted (h, q)-extension of Euler polynomials and numbers, by using p-adic q-deformed fermionic integral on Zp. By applying their generating functions, they derived the complete sums of products of the twisted (h, q)-extension of Euler polynomials and numbers, see[13, 14]. In this paper we cosider the new q-extension o...
متن کاملNew symmetric identities of Carlitz’s generalized twisted q-Bernoulli polynomials under S3
In this paper, the authors consider the Carlitz’s generalized twisted q-Bernoulli polynomials attached to χ and investigate some novel symmetric identities for these polynomials arising from the p-adic q-integral on Zp under S3.
متن کامل